Υπάρχει Θεός; Το ερώτημα αυτό απασχολεί τους φιλοσόφους και τους θεολόγους εδώ και δεκάδες αιώνες. Ξαφνικά πριν από λίγους μήνες εμφανίστηκε η είδηση ότι δύο ευρωπαίοι μαθηματικοί, χρησιμοποιώντας έναν ηλεκτρονικό υπολογιστή και τη σχετική θεωρία……..
Λίγο πριν από τον θάνατό του ο μεγάλος αυστριακός μαθηματικός Κουρτ Γκέντελ (Kurt Gödel) δημοσιοποίησε μια μαθηματική απόδειξη για την ύπαρξη του Θεού την οποία επεξεργαζόταν επί 30 χρόνια. Η απόδειξη αυτή βασίζεται στη σύγχρονη αξιωματική θεμελίωση των Μαθηματικών, η οποία με τη σειρά της αποτελεί συνέχεια της αρχαιοελληνικής μαθηματικής παράδοσης και της Γεωμετρίας του Ευκλείδη. Σε αυτόν τον τρόπο θεμελίωσης ξεκινάμε με τη διατύπωση αξιωμάτων, δηλαδή υποθέσεων που δεν αποδεικνύονται αλλά φαίνονται προφανείς.
Η «απόδειξη» αυτή φάνηκε εξαρχής ότι είχε δύο αδύνατα σημεία. Πρώτον, είναι άραγε τα αξιώματα όντως προφανή και, δεύτερον, είναι άραγε συμβατά μεταξύ τους ώστε να μην έχουν κρυφές ασυνέπειες;
Το κατόρθωμα των δύο ευρωπαίων μαθηματικών, του Γερμανού Κρίστοφ Μπεντζμίλερ (Christoph Benzmüller) και του Αυστριακού Μπρούνο Βολτσενλόγκελ Παλέο (Bruno Woltzenlogel Paleo), ήταν ότι κατάφεραν να αναπαραστήσουν τα αξιώματα του Γκέντελ και τους συλλογισμούς του με μαθηματικά σύμβολα. Στη συνέχεια, με τη βοήθεια εξειδικευμένου λογισμικού που χειρίζεται έννοιες λογικής σε ηλεκτρονικό υπολογιστή, μπόρεσαν αφενός μεν να διαπιστώσουν ότι τα αξιώματα δεν περιέχουν κρυφές αντιφάσεις και αφετέρου να επιβεβαιώσουν την απόδειξη του θεωρήματος.
Ιδέα με αρχαίες βάσεις
Θα πρέπει να σημειωθεί ότι, πέρα από το καθαρά μαθηματικό μέρος, η βάση της απόδειξης του Γκέντελ περί της υπάρξεως του Θεού δεν ήταν εντελώς καινούργια αφού έμοιαζε με το επιχείρημα του άγγλου θεολόγου και φιλοσόφου του 11ου αιώνα Ανσέλμου του Καντέρμπουρι, το οποίο, με τη σειρά του, βασίζεται στη μέθοδο της «εις άτοπον απαγωγής» των αρχαίων ελλήνων φιλοσόφων και μαθηματικών. Ο συλλογισμός του Ανσέλμου ήταν ο εξής:
1. Ο Θεός είναι η υπέρτατη ύπαρξη.
2. Η ιδέα του Θεού υπάρχει στη σκέψη μας.
3. Μια ύπαρξη που υπάρχει τόσο στη σκέψη όσο και στην πραγματικότητα είναι ανώτερη από μια ύπαρξη που υπάρχει μόνο στη σκέψη.
4. Αν ο Θεός υπήρχε μόνο στη σκέψη μας, τότε θα μπορούσαμε να συλλάβουμε την ιδέα μιας ανώτερης ύπαρξης η οποία υπάρχει και στην πραγματικότητα.
5. Αλλά δεν μπορούμε να φανταστούμε μια ύπαρξη ανώτερη από τον Θεό.
6. Αρα ο Θεός υπάρχει στην πραγματικότητα.
Η βασική συνεισφορά του Γκέντελ ήταν η μαθηματική περιγραφή του παραπάνω συλλογισμού και ειδικά των σημείων 3 και 4. Εκεί χρησιμοποίησε την έννοια της πιθανής αλήθειας μιας πρότασης, η οποία επεκτείνει την αριστοτελική λογική που δέχεται ότι μια πρόταση είναι είτε αληθής είτε ψευδής.
1+1 κάνουν 2;
Ο Γκέντελ έγινε διάσημος σε νεαρή ηλικία όταν διατύπωσε το περίφημο «θεώρημα της μη πληρότητας». Συνέπεια του θεωρήματος αυτού είναι ότι, στο πλαίσιο της «Απλής Αριθμητικής» των ακεραίων αριθμών, η οποία βασίζεται σε αξιώματα όπως το γνωστό «1+1=2», υπάρχουν προτάσεις που δεν είναι δυνατόν να διαπιστώσουμε αν αληθεύουν ή όχι βασιζόμενοι μόνο στα αξιώματα αυτά.
Οι συνθήκες θανάτου του Γκέντελ ήταν πολύ ασυνήθιστες και αποτέλεσαν την έμπνευση για το θεατρικό έργο «Δέκατη έβδομη νύχτα» του Απόστολου Δοξιάδη. Ο Γκέντελ έπασχε από έλκος του δωδεκαδακτύλου και ακολουθούσε, με δική του πρωτοβουλία, μια πολύ αυστηρή δίαιτα. Σιγά-σιγά άρχισε να πιστεύει ότι τον δηλητηριάζουν και κατέληξε να αρνείται να φάει το φαγητό του.
Ο κ. Χάρης Βάρβογλης είναι καθηγητής του Τμήματος Φυσικής του ΑΠΘ.
Πηγή : tovima.gr
NewsRoom Mykonos Ticker